ON THE SYNTHESIS OF Q-PHENYLTOSYLDIAZOMETHANE

A.M. van Leusen, J. Strating and Daan van Leusen

Department of Organic Chemistry, The University, Zernikelaan, Groningen, The Netherlands.

(Received in UK 5 November 1973; accepted for publication 15 November 1973)

A recent preliminary paper by <u>Dahn</u> and coworkers² is devoted to the problem of the synthesis of α -substituted tosyldiazomethanes <u>2a-c</u>. For various reasons their communication is of interest. The results of <u>Dahn</u> agree very much with our earlier observations³ as far as α -diazosulfones are concerned with alighatic substituents, like <u>2a</u> and <u>2b</u>. However, our mutual experiences with α -phenyltosyldiazomethane (2c) are quite conflicting.

$$CH_{3} \longrightarrow SO_{2} \xrightarrow{CH-N-C-OEt} \xrightarrow{Al_{2}O_{3}} Et_{2}O \xrightarrow{CH_{3} \longrightarrow SO_{2}-C=N_{2}} [1]$$

$$\frac{1}{2} \xrightarrow{2} \frac{2a}{B} \xrightarrow{R} = Me$$

$$(not, for \frac{2c}{B} \xrightarrow{R} = Ph)$$

In our laboratory, n-alkyl substituted α -diazosulfones⁴, including <u>2a</u>⁵ (<u>i.e.</u> R = Me) and <u>2</u> (R = Et) have been prepared previously by the alumina-induced cleavage of the <u>N</u>-nitrosocarbamates given in eq. [1]³, a method introduced originally for the synthesis of sulfonyldiazomethanes <u>2</u> (R = H).⁶ With increasing size of the group R, however, the synthesis of the precursory <u>N</u>-nitrosocarbamates becomes progressively more difficult. We have been unable to isolate <u>N</u>-nitrosocarbamate <u>1b</u> (<u>i.e.</u> R = i-Pr) by nitrosation of the corresponding carbamate with nitrosyl chloride in pyridine.³ It now appears that <u>Dahn</u> and his group did succeed after all, and also that they were able to convert <u>1b</u> (without being isolated) into α -diazosulfone <u>2b</u>, according to eq. [1].² Neither group, apparently, has succeeded in the synthesis of <u>1</u> (R = Ph), and consequently α -phenyltosyldiazomethane (<u>2c</u>) cannot be prepared by reaction [1].^{3,2}

According to <u>Dahn</u>, α -phenyltosyldiazomethane (<u>2c</u>) is formed, however, in solution by reaction [2], but the compound is reported to be too unstable to allow for "isolation and further structural investigation".² We find these assertions incompatible with reality.

5208

$$TosC1 + PhCH=N_2 \xrightarrow{?} TosC=N_2 \stackrel{2c}{\underline{c}} (or PhC=N_2 \stackrel{2}{\underline{c}})$$

$$Ph \qquad C1 \qquad [2]$$

We have prepared α -phenyltosyldiazomethane (2c) (and analogues) by two independent routes: by application of the diazo-transfer reaction⁷ and of the Forster reaction⁸, as indicated in eq. [3]. In our hands 2c is a red, crystalline solid - that perfectly well can be isolated and characterized - melting under decomposition at 79-81° (Kofler block); IR (nujol) 2085 (;C=N=N), 1342 and 1152 cm⁻¹ (SO₂); NMR (CC1₄) δ 2.38 (s, 3 H), 7.05-7.35 (m, 7 H), 7.67 (d, 2 H, J = 8.5 Hz); correct elemental analysis. With hydrochloric acid in ether, 2c is converted quantitatively to α -chlorobenzyl p-tolyl sulfone.

 $\begin{array}{c} \text{TosCH-CHO} + \text{p-HOCCC}_{6}\text{H}_{4}\text{SO}_{2}\text{N}_{3} \xrightarrow{\text{base}} \text{TosC=N}_{2} \xleftarrow{\text{C1NH}_{2}} \text{TosC-Ph} \\ \downarrow \text{ph} & \downarrow \text{ph} & \downarrow \text{ph} & \downarrow \text{NOH} \end{array}$ [3] 2c

Furthermore, we feel it highly unlikely that 2c can be prepared by reaction [2]. It is known that diazomethane itself cannot be sulfonylated by sulfonyl chlorides.⁹ It is also known that the reaction of carbon nucleophiles with sulfonyl chlorides usually leads to chlorination rather than sulfonvlation.¹⁰ Therefore chances are that the unstable diazo compound observed by <u>Dahn</u> in fact has been α -chlorophenyldiazomethane (3), an unknown compound that may very well be unstable indeed.

Finally, α -diazobenzyl 1,2-diphenylvinyl sulfone, m.p. 112-114[°] (dec.), reported by <u>Car</u>pino et al. 1, should be mentioned as the first representative of the sulfonylphenyldiazomethanes.

Notes and References

- 1. Chemistry of α -Diazosulfones, part 15. For part 14, see A.M. van Leusen, B.A. Reith and Daan van Leusen, <u>Recl.Trav.Chim.Pays-Bas</u>, submitted (1973).
- 2. B. Michel, J.F. McGarrity and H. Dahn, Chimia 27, 320 (1973).
- 3. a. A.M. van Leusen and J. Strating, Quart. Rep. Sulfur Chem. 5, 67 (1970); b. A.M. van Leusen, thesis, Groningen University, 1965.
- 4. In addition to the compounds mentioned in this paper, special types of α -alkyl- α -diazosulfones were obtained by addition of tosyldiazomethane (2, R = H) to enamines, A.M. van Leusen, B.A. Reith, R.J. Mulder and J. Strating, <u>Angew.Chem.</u> 83, 290, or <u>Intern.Ed</u>. 4, 271 (1971), and to
- Reith, R.J. Mulder and J. Strating, Angew.Chem. 85, 290, or <u>Intern.Ed. 4</u>, 271 (1971), and to aldehydes, A.M. van Leusen and Daan van Leusen, unpublished results.
 5. The physical data reported by <u>Dahn et al.</u> for 2a and its precursor <u>la</u> are in good agreement with our observations, except for some (probably insignificant differences) in the decomposition temperatures. We found <u>ca</u>. 40° (lit.² 52-55°, dec.) and 95° (lit.² 77-79°) for <u>2a</u> and <u>la</u>, respectively; and for the phosphazine derivative of <u>2a ca</u>. 145° (lit.² 162-164°).
 6. A.M. van Leusen and J. Strating, <u>Recl.Trav.Chim.Pays-Bas</u>, 84, 151 (1965).
 7. see: M. Regitz, <u>Angew.Chem. 79</u>, 786, or <u>Intern.Ed</u>. 6, 733 (1967).
 8. M.O. Forster, <u>J.Chem.Soc. 107</u>, 260 (1915).
 9. F. Arndt and H. Scholz, <u>Chem.Ber. 66</u>, 1012 (1933). With tosyl bromide, diazomethane reacts to give 2-bromoethyl p-tolyl sulfone, without the formation of bromomethyl p-tolyl sulfone,

- give 2-bromoethyl p-tolyl sulfone, without the formation of bromomethyl p-tolyl sulfone, A.M. van Leusen, Daan van Leusen and W.A.L. Pronk, unpublished results.
- C.H. Suter, "The Organic Chem. of Sulfur" Wiley, New York 1945, p. 504 ff; M.S. Kharasch and O. Reinmuth, "Grignard Reactions of Nonmetallic Substances", Prentice-Hall 1954, p. 1290 ff; W.E. Truce and G.D. Madding, <u>Tetrah. Letters 1966</u>, 3681; A.M. van Leusen, B.A. Reith, A.J.W. Iedema and J. Strating, <u>Recl. Trav.Chim. Pays-Bas</u>, <u>91</u>, 37 (1972).
 11. L.A. Carpino, L.V. McAdams, R.H. Rijnbrandt and J.W. Spiewak, <u>J.Amer.Chem.Soc</u>. <u>93</u>, 476 (1971).